Influence of ibuprofen on phospholipid membranes.
نویسندگان
چکیده
A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.
منابع مشابه
Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant
Objective(s) Ibuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and...
متن کاملPhospholipid domains in bovine retinal rod outer segment disk membranes.
Phospholipid behavior in bovine retinal rod outer segment disk membranes and in phosphatidylcholine membranes containing the photopigment rhodopsin is explored. 31P NMR spectra of these systems show two distinguishable resonances. One resembles closely the 31P NMR resonance normally obtained from phospholipid bilayers. The other resonance is much broader. Thus, there appear to be two phospholip...
متن کاملPharmaceutical retention mechanisms by nanofiltration membranes.
This study investigates the retention mechanisms of three pharmaceuticals-sulfamethoxazole, carbamazepine, and ibuprofen-by nanofiltration (NF) membranes. Laboratory-scale experiments were carried out with two well-characterized NF membranes, with the goal of relating pharmaceutical retention behavior to membrane characteristics, physicochemical properties of the pharmaceutical molecules, and s...
متن کاملCholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen.
There is increasing evidence that common drugs, such as aspirin and ibuprofen, interact with lipid membranes. Ibuprofen is one of the most common over the counter drugs in the world, and is used for relief of pain and fever. It interacts with the cyclooxygenase pathway leading to inhibition of prostaglandin synthesis. From X-ray diffraction of highly oriented model membranes containing between ...
متن کاملOptimization of Ibuprofen Delivery through Rat Skin from Traditional and Novel Nanoemulsion Formulations
The topical delivery of non-steroidal anti-inflammatory drugs (NSAIDS) such as Ibuprofen has been explored as a potential method of avoiding the first pass effects and the gastric irritation, which may occur when used orally. Ibuprofen is formulated into many topical preparations to reduce the adverse effects and simultaneously avoid the hepatic first-pass metabolism as well. However, it i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2015